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ABSTRACT 
This paper presents a proof-of-concept of the use of A.I. Real-time Lift Door 
Inspection System which can revolutionize lift maintenance. Lift service interruptions 
caused by malfunctioning lift doors are unavoidable. Unlike traditional inspection, the 
fully automated system will greatly reduce the need for lift technicians to conduct 
inspections inside the lift shaft. The system consists of a versatile stand-alone 
installation suitable for all types of lifts. The installation involves electronic sensors, 
cameras, microphones, an edge computer, and a 5G router. As the lift car moves along 
the shaft, a camera captures the landing doors' images to assess their integrity and 
alignment. At the stop of each designated floor, another camera monitors the 
movement of both the car doors and landing doors, while a microphone monitors any 
abnormal screeching sounds when the doors are in motion. A set of ultrasonic sensors 
also detects angular misalignments by measuring the distance between the car doors 
and landing doors. Collected data are then processed by an edge computer and 
wirelessly transmitted through 5G to a cloud computing platform. Smart analytics on 
video and audio data are performed to analyze the health of lift doors for predictive 
maintenance. Alerts are also generated to prompt technicians to take necessary actions. 
The system offers automated and 24/7 continuous monitoring, enhanced safety for lift 
technicians and passengers, data-driven predictive maintenance, and improved 
maintenance quality. This paper will share the experience, effectiveness, and 
challenges of developing a new concept of system for inspection and predictive 
maintenance strategy for lift installations. 
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INTRODUCTION 
Lift doors are an important safety feature in any building, designed to prevent people 
from falling into the lift shaft. Lift systems have two sets of doors: the landing doors 
(also known as hoistway doors or shaft doors) which keep people in lift lobbies and 
the car doors (or cabin doors) which keep passengers inside the lift car. If these doors 
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are not properly aligned or malfunctioning, they can be a serious hazard to both 
passengers and lift mechanics.  
 
Decades of lift equipment fault incident records published by the government show 
that a significant number of the incidents were related to mechanical failures in lift 
doors (EMSD 2024). A study of several thousands of lifts in the city also found that 
the car door and landing door mechanisms are among the four main causes of lift 
system breakdowns (Zhang and Zubair 2022). Manual inspection of lifts systems 
remains the main mode of inspection, which has disadvantages of high time demand, 
human labour, and disability of real-time detection. Conducting manual inspections 
on a weekly basis is the common practice in Hong Kong. The A.I. Real-time Lift 
Door Inspection System bypasses this limitation, allowing 24/7 continuous 
monitoring. 
 
SYSTEM DESCRIPTION 
The inspection system is a standalone device for examining the lift car doors and all 
landing doors of a lift shaft continuously during normal operation. An installation 
drawing is shown in Figure 1, left. A main compartment ("1") is mounted atop the lift 
car that houses an edge computer and 5G router, a laser distance sensor pointing at the 
lift shaft ceiling and a pressure sensor ("2"), a camera referred to as Camera 1 ("3"), 
tilting upward, and an LED lamp ("4"). 
 

Figure 1. Installation drawing and Site 1 installation photos of key devices 
 
One segment is installed between and above the car doors (Fig. 1, bottom centre). It 
comprises a second camera referred here as Camera 2 ("5") that is pointing straight 
down at the car door sill, and a microphone. A final segment comprises eight 
ultrasonic sensors ("6"), with one sensor installed on each corner of the right and left 
car door panel. The device sampling rates and their target objectives are listed in 
Table 1. 



Table 1. Key devices and characteristics 
Device Measurement(s) Sampling Rate Target concern 

Camera 1 Video of landing doors  
along the lift shaft 

4K,  
25 fps 

Landing door 
alignment 

Camera 2 Video of car door movements 1080p,  
30 fps 

Car door 
operation time 

Microphone Audio record of car door 
operations 48 kHz Car door 

operation noise 
Ultrasonic 

sensors 
Distance of each corner of 
landing door to car door 5 Hz Landing-to-car 

door alignment 
Laser sensor, 

Pressure sensor 
Distance of car to shaft ceiling, 

atmospheric pressure 
20 Hz, 
100 Hz Lift location 

 
METHODOLOGY 
  
Data Description 
All data used for analysis and model training in this paper were collected from two 
installation sites in Hong Kong (Table 2), with key differences in the age of the lift 
and their frequency of use. 
 
Table 2. Installation sites and data collection specifics 

Attribute Site 1 Site 2 
Building Construction Year 2015 1984 

No. of Storeys 22 10 
Floors with Landing Doors (Total) G,1,3, 12-21 (13) G,1-10 (11) 

Lift Type Passenger Freight 
Sample Period May to July 2024 August 2024 

No. of Weeks Sampled 4 1 
Lift Cycles Collected 6,250 216 

 
Preprocessing 
Sensor recordings and media files were collectively processed through a data pipeline. 
Data were first clipped into lift “cycles”, which is defined hereon as the period from 
the first car movement and to the end of the subsequent stationary phase. Using 
pressure readings, cycles were captured and differentiated into idle and travel phases. 
A five-minute sample is illustrated in Figure 2, showing 9 idle periods and 8 cycles.  
 

Figure 2. Normalized pressure with idle periods (“P”) colorized 
 

A fisheye distortion correction to remove the fisheye effect of the lens, followed by 
homographic transformation to shift from tilted up to direct frontal view, was applied 
to all Camera 1 clips to obtain the final rectilinear perspective of the doors (Figure 3). 



 

Figure 3. Camera 1 perspective before (L) and after (R) transformations 
 
Failure Simulation 
In coordination with both building’s registered lift workers, some failure scenarios 
were simulated (Table 3) in which the door mechanisms were altered in a controlled 
manner, and the resultant behaviors were recorded by the inspection system on-site. 
Collected data were separated into training and testing sets. The same analysis 
methods were applied on both the normal operation data and simulated failure data. 
 
Table 3. Simulated failure scenarios 

Failure Scenario Site 1 Site 2 
Landing doors with small gap (<5cm) ✓ ✓ 
Car doors operating slower than normal * * 
Car doors “stuck” while in opening/closing ✓ ✓ 
Car doors make loud/screeching noise ✓ ✓ 

* prepared by digital manipulation of video FPS of normal operation clip 
 
AI Models 
An in-depth literature review of the You Only Look Once (YOLO) family of object 
detectors proved their applicability in detecting a variety of industrial defects and 
upholding strict quality inspection, especially for edge devices with constrained 
computing capacity and real-time requirements (Hussain 2023). Two YOLO models 
were separately trained on 1,375 annotated frames of landing doors at 4K resolution, 
and 1,790 labelled 1080p frames of car doors, for 100 epochs. The model architecture 
was selected for a balance of fast inference time and high accuracy. Failure samples 
were included in the landing door training set. 
 
Analysis Methods 
The landing door AI model was run on each Camera 1 cycle clip, and only frames 
with full-length landing doors were subjected to video analysis. Knowing the real-
world width and the pixel distance of the lift doorway, the bounding boxes 
coordinates of each door detection were used to calculate the landing door gaps in cm.  
A combination of brightness threshold and computer vision detection by the car door 
AI model was applied to analyze each Camera 2 clip. The timestamps at which the car 
doors move from fully-closed to a fully-opened state (opening phase) and vice versa 
(closing phase) were identified, and thus operation phase durations recorded. Because 



duplicate car door operations can be recorded (eg. passenger interruption) in a lift 
travel, only the first door opening and the last door closing movement were analyzed. 
 
Using the door operation timestamps above, the corresponding audio clips were cut. 
This was done to keep the audio analysis relevant and also to minimize capturing 
passengers’ conversations. Root-mean-square (rms), a measure of the overall 
perceived loudness or energy of an audio signal, was used to classify anomalous 
sounds of a rotating pump using machine learning algorithms analyzing audio features 
(Intel 2023). Rms was measured here for each phase audio clip. 
 
The sensor readings at each corner of each door panel were collated and their median 
readings were analyzed individually. The median laser distance measurements during 
the stationary phase of each lift cycle were calculated and grouped via K-means 
clustering (N = number of storeys plus ground floor) to determine lift location. For 
some cases in Site 1 where laser readings were missing, the differences in median 
pressure readings between the end of one cycle and the end of the previous cycle were 
gathered and studied to find the reference values corresponding to number of floors 
travelled, from which destination floor could then be determined. 
 
Postprocessing 
All data are organized into clusters based on the destination floor of the operation 
cycles. The spread of the results were evaluated with standard deviation and 
interquartile range. Threshold conditions were also applied to alert for possible 
anomalies. Any outliers or possible anomalous results were reported and saved to 
separate files according to target issue. 
 
RESULTS AND DISCUSSION 
 
Landing Door Alignment 
For Site 1, each floor with landing doors was sufficiently sampled, between 250 to 
1,600 times (excluding the rooftop floor). Across the study period, all landing door 
gaps were measured consistently below 0.3 cm with median readings of 0.2 cm 
(SD<0.1 cm) per floor, all below the failure condition of 0.6 cm. Due to the very close 
visual appearance of landing doors from inside the shaft, the low standard deviation 
was expected for both sites.  
 
Figure 4 shows side-by-side video analysis outputs under normal (left) and failure 
(right) conditions for Sites 1 and 2. The high resolution of Camera 1 captured 
sufficiently fine detail for the YOLO object detection model to differentiate between 
pixels and determine landing door misalignment at very fine scales.  



Figure 4. Landing door misalignment; Box detections in blue, with close-up in red 
 
Two shapes of simulated misaligned centre-opening doors were tested: parallel and 
A-shaped. In Site 1 (top right), the model detected the parallel gap and the threshold 
condition (>0.6 cm) triggered the failure message. For A-shaped misalignment in Site 
2 (bottom right), the gap at the door midsection was also detected and triggered the 
alert. The landing door misalignment detection method was stable and consistent in 
evaluating the doors’ conditions in near real-time for both sites. 
 
Car Door Operation Duration and Noise 
The car door opening phase for Site 1 ranged from 2 to 2.2s, while the closing phase 
was from 3.2 to 3.6s, depending on the floor. Measurements were consistent over the 
study period (SD<0.1s). Also found were a few false positives, due to the lifts being 
at parking mode and all the lights inside the lift and the landings are switched off by 
the building operator on Saturday nights.  
 
Door operation video analyses in Site 2 data found approximately 4.4 to 4.5s and 4.5 
to 4.7s for opening and closing duration across different floors, both lengthier than 
Site 1 as it is a freight lift. Based on these collected observations from normal data, 



the anomaly thresholds were thus set at 3s for opening and 4s for closing for Site 1, 
and both 5s for Site 2. 
 
The system was tested on the failure scenarios, with some analysis outputs in Figure 5, 
involving a digitally slowed clip in Site 1 and for Site 2 where a lift worker manually 
blocking the doors, adjusted beforehand, so that these would get “stuck” in real-time. 
The failure video samples triggered the failure conditions (3s for Site 1 and 5s for Site 
2), and generated the warning messages. No anomalous cases were found in the 
normal operation data. 
 

Figure 5. Analysis outputs of car door failures. Top: slow opening, bottom: “stuck” 
 
Based on audio analysis by rms, the simulated failure noise created by banging on the 
landing door and the bumping noise of the adjusted doors on-site triggered the 
maximum rms threshold condition. Loud screeching noises were also captured during 
some normal door operations in Site 1. However, the corresponding Camera 2 clips 
revealed that a person was passing through the lift car right as the doors began to 
move, and that the high-pitched screeching noise was due to their footwear. More 
work is needed in differentiating between failure and man-made screeching noise.  
 
Landing-to-Car Door (Angular) Alignment 
Results in both sites show an average standard deviation of 0.1cm to 0.3cm, which is 
acceptable given that the ultrasonic sensors are designed for an accuracy of 1cm. Any 
readings +/-1.5cm were considered as outliers. All readings were normal, except one 
sensor in Site 1, in specific floors only, and may be due to some physical obstruction 
on those specific landing doors not captured on camera. Nevertheless, the 
measurements were in general consistent across the time period, demonstrating the 
effectiveness of measuring the car’s angular alignment across the lift shaft. 
 
 



Lift Location 
Lift location was accurately determined for most floors in both sites with low 
variability (SD<0.03m), with low-traffic floors affected by sample size (SD>0.1m). In 
Site 1, the laser distance sensor malfunctions at distances beyond 40m, in which case, 
the consistent pressure differences for every number of floors travelled were used to 
identify any unknown locations. The study found the laser sensor alone effectively 
estimated lift car location in Site 2, and was well supplemented by the pressure sensor 
for tall buildings such as Site 1 with poor ceiling reflectivity and/or unavoidable 
imperfect laser sensor alignment.  
 
Predictive Maintenance 
This study found that equipment degradation in various segments in the lift system 
could be closely monitored, alerting lift personnel of any suspicious or potential 
abnormalities and thus preventing breakdowns. Continued collection of operation data 
and other data sources like historical maintenance records are needed. 
 
CONCLUSION AND IMPLICATIONS 
This proof-of-concept study successfully installed the standalone lift inspection 
system in two sites with contrasting characteristics, achieving automatic recording, 
extraction, and analysis of lift data in two high-resolution cameras, a microphone, a 
laser sensor, a pressure sensor, and ultrasonic sensors. Although the findings are 
limited to the two sites, the results granted firsthand experience into the feasibility of 
installation and efficacy of detection methods for various anomalies in lift doors and 
granting potential for early warning alarms, solidifying the technological foundation 
for the AI real-time lift door inspection system for predictive maintenance. With a 
combination of threshold conditions, statistical methods and AI approaches, fault 
detection methods specifically for landing door misalignment, car door movement, 
landing-to-car angular alignment and lift location were developed. The system 
facilitates lift engineers to make informed decisions plan their maintenance strategies 
well in advance, and to achieve their goals of reduced downtime, enhanced safety and 
maintenance quality. 
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